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Abstract 

 
Along with the progress of the industrial world, both the aviation industry, the health 
industry, the chemical industry, the electronics industry, and so on, the need for composite 
materials is increasing to meet market demand. Functionally Graded Materials (FGMs) are 
an advanced material class of composite materials that have material properties that vary 
from one point to another. In this study, two-dimensional heat conduction analysis will be 
conducted in FGM using the Finite Element Method (FEM). Three models gradation FGMs 
properties examined in the study, namely polynomial, Trigonometry, and Exponential. The 
response temperature of FGMs using gradation three models compared and analyzed. The 
optimum temperature distribution of four models built with the ANSYS software. The result 
is that heat conduction in trigonometric variations is very good, resulting in low-temperature 
values when compared to both of them. Then, the performance and efficiency obtained 
using FEM to analyze two-dimensional heat conductivity in FGMs is also very good. 
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——————————      —————————— 

 

A. INTRODUCTION 

FGMs are usually associated with particulate composite materials, where the 

volume fraction of a particle varies one or more directions. One of the advantages of 

monotonous variation from the phase fraction of the constituent phase is the 

removal of the stress discontinuities. FGMs can also be developed using fiber-

reinforced with a constant fraction of fiber volume, taking into account the 

production of optimal set properties or responses [1, 2]. 

In its development, several types of FGMs studied. In micromechanical-based 

elastic, two-phase models FGMs local interactions betweens particles while the 

effective material properties change gradually along with the gradation directions 

where the spherical or almost spherical particles are embedded in the isotropic 

matrix [3]. Besides, FGMs particulate fractional constituent phases and revised 

volumes in one vertical direction. In FGM, the temperature and placement function 

that corresponds to the fulfillment of boundary conditions at the edges is used to 

reduce the differential equation determined by thermomechanics for a set of 

ordinary differential equation pairs in the coordinate relationship. Thus, FGM can 

also have micro-approval [4]. FGM allows us to have a different architecture, using 

orthotropic motivation. Thermal barrier coating (TB) can reduce the surface 

temperature of metal from metal components. Thus, orthotropic FGMs have a 
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microstructure and a flat column structure obtained from each plasma spray and 

electron document from the physical vapor deposition process [5]. 

There is a lot of heat transfer research in FGM in the industrial sector. In this 

sector, temporary heat transfer problems on the FGM strip are resolving with 

asymptotic solutions, theoretical treatments, and with the Local Boundary Integral 

(LBIM) method [6, 7, 8]. 

Transient heat transfer problems have also been resolving using the Boundary 

Element (BEM) approach compared to the Finite Element Method (FEM) analytical 

and simulation solutions [9]. The Boundary Element Method (BEM) is also used by 

[10, 11, 12]. Galerkin Boundary Element Method (GBEM) [13]. In another study, the 

combined approach of the BEM and Precise Integration Method (PIM) shows that 

PIBEM (a combination of PIM with the Radial Integration Limit Element Method 

"RIBEM") can achieve stable and accurate results for large time differences. But will 

produce small-time differences only in a different case. Thus, RIBEM-FD (RIBEM-

Finite Difference) produces accurate results [14]. 

In other studies, sensitivity analysis of heat conductivity has been carried out 

on FGM using FEM [15, 16, 17, 18, 19, 20]. There are also other studies using the FEM 

method compared to direct and adjoin methods [21]. A multilevel FGM 

thermoelastic analysis study subjected to transient thermal shock. This study 

developed an asymmetric semi-analytic FE model using the theory of three-

dimensional linear elasticity [22]. A year later, a study heat transfer of two 

dimensions by transient conduction in a hollow FG cylinder. In this study, heat 

transfer by conduction uses a limited length. The result for modeling and simulation 

of equations that govern the multilevel FEM used has several conventional FEM 

advantages [23]. And another one-dimensional FGM cylinder study was completed 

by [24] using Laplace domain analytic methods. 

Other methods related to the solution of conduction heat conduction 

problems by using the BEM meshless method [25], Free Galerkin Element method 

(EFG) [26], meshless B-splines method [27,28], and that recently used the Numeric 

Manifold method (NMM) [29]. In addition to using numerical methods, transient 

conduction heat transfer problems can also use analytical methods [30-33]. 

A numerical procedure to presented to determine an optimal material 

distribution of Functionally Graded Materials (FGMs) for heat conduction problems. 

A volume fraction used the design of variable and material properties, which are 

assumed to be functions of temperature. 
 

B. METHODS 

A heat transfer analysis problem is essential for the fields of engineering and 

science that commonly founded in various technological applications such as 

electronic cooling, thermal insulation or heat conduction, and so on.  

Heat conduction is the transfer heat energy from the object to another object 

or from one object to another without the transfer of particles or substances. Heat 

conduction can occur in gases, liquids, and solids. 
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Considering a two-dimensional bounded domain   with constant material 

parameters, the governing equation for transient heat conduction problems in 

isotropic media can be expressed as [13]: 

  ( ) ( )
  (   )

  
  ( )   (   )   (   )      .  (1) 

The Dirichlet boundary condition: 

    ̅      ,  (2) 

The Neumann boundary condition: 
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The Robin boundary condition: 

   
  

  
     

  

  
    (    )      ,  (4) 

where   represents temperature,  ( )  is the heat-generation rate which is 

usually an explicit function of  ,    and    re specified thermal conductivities where 

  and   are the principal directions of the conductivity tensor,  ̅  and  ̅  are the 

prescribed temperature and the given heatflux on the corresponding boundaries, 

respectively,    and    are the direction cosines of the outward normal to the 

boundary surface,   is the convection heat transfer coefficient,    is the 

environmental temperature, and   ,    and    are the boundaries to which the 

Dirichlet, Neumann and Robin conditions are applied. For simplicity, in this paper 

we only consider Dirichlet and Neumann boundary conditions. 

The initial condition is: 

  (   )            .  (5) 

The finite element method is a numerical procedure used to derive a solution 

to most engineering problems involving stress analysis, heat transfer, 

electromagnetic and fluid flow. There are many complex forms of domain problems 

that easy to solve. 

In general, finite element methods (for some elements), are defined as: 

 [ ]     (6) 

with [ ] is a matrix condition, or it can also be spelled out as: 

 [ ]      ∫ *  
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Where    dan    is a shape function of the Moving Least Squares (MLS) rows 

  dan column  , respectively,   is a vector representing nodal displacement and   is a 

vector that describes the nodal force and external force, or it can also be described as: 

      ∫  (   )     ∫  ̅      
. (6b) 

Using equation (2), the heat transfer equation using the FE method can be 

expressed as: 

   ̇      ,  (7) 

with: 

    ∫        
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  is the capacity matrix,  ̇ is a vector that describes the nodal displacement over 

time,   is the matrix condition,   is a vector representing nodal displacement,    is 

the transpose matrix of the shape function and    is a vector that describes nodal 

forces and external forces. 
 

C. RESULT AND DISCUSSION 

To validate the method, some transient heat conduction problems two-

dimensional are analyzed. The first example corresponds to a square domain 

composed of three different FGMs, corresponding to, respectively, a quadratic, an 

exponential, and a trigonometric variation of the material properties along the x-axis. 

To solve this example with the FEM approach, given by Eq. [6] is used. The second 

examples consist of a circular. A heat conduction problem in a circular cylinder 

made of functionally gradient material is analyzed. It is assumed that     
   at the 

inner boundary and      
   at the outer boundary. The thermal conductivity   is 

given by  ( )         where  is the distance from the center of a circular 

cylinder, and inner and outer radii are      and       mm, respectively. the 

interpolated values in the case     and    . And the third example. Geometry 

and boundary conditions, as shown in Fig. 1. The numerical response examples 

compared to the two-dimensional analytical solutions. And a temperature change all 

example calculated using software ANSYS 17.0 run on Asus A451L with OS 

Windows 8, processor Intel CORE-i5 NVIDIA GEFORCE 740M and RAM of 4GB. 

And the error value obtained, following the equation (28): 

    √
∑ [ (  )  ̂(  )]

   
   

∑  (  )
   

   

, (8) 

where  (  ) and  ̂(  ) represent the analytical and numerical solutions, respectively. 

It pointed out that for the heat conduction problems pose no analytical solution, 

numerical results use to other numerical methods available in the literature is used 

as a benchmark. 

 

 

 

 

 

 

 

 

Figure 1. Geometry and Boundary Conditions 

Table 1. Material Properties of the FGMs Square Problem 

Variation      ̅          ( ) 

Quadratic 0 5 5 1 2 0  (    )  

Exponential -5 5 5 1 0 1      (  ) 

Trigonometric 0.2 5 5 1 2 0.2  (   (    )      (    ))  
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NUMERICAL RESULTS 

Square FGMs 

Polynomial Variations 

Figures 2a, 2b, and 2c show a temperature change calculated using software 

for the polynomial FGMs square shape with the nodal numbers 279, 1037, and 2275, 

respectively. An analytical solution as follows: 

  (     )  
   

√ ( ) 
 

   

√ ( )
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    (  )

  
      (
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      ( 
    

  
  ),  (9) 

where    √ ̅(    ) ̅.  (9a) 

 

a)        b)    c) 

 

 

Figure 2. Plot contours from the temperature of the polynomial FGMs square 

shape with a) 279, b) 1037, and c) 2275 nodes 

 

Eksponensial Variations 

Figures 3a, 3b, and 3c show a temperature change calculated using software 

for the exponential FGMs square shape with the nodal numbers 279, 1037, and 2275, 

respectively. An analytical solution as follows: 
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a)        b)    c) 

 

 

Figure 3. Plot contours from the temperature of the exponential FGMs square 

shape with a) 279, b) 1037, and c) 2275 nodes 

Trigonometri Variations 

Figures 4a, 4b, and 4c show a temperature change calculated using software 

for the trigonometry FGMs square shape at with the nodal numbers 279, 1037, and 

2275, respectively. An analytical solution as follows: 
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Where    √ ̅(   (  )       (  )) ̅.  (11a) 

 

a)        b)    c) 

 

 

Figure 4. Plot contours from the temperature of the trigonometry FGMs square 

shape with a) 279, b) 1037, and c) 2275 nodes 

 

Hollows Cylinder FGMs 

Polinomial Variations 

Figure 5 shows a temperature change calculated using the FE method 

compared to using an exact solution on the polynomial FGMs. The results show that 

there is almost the same result between the two. Because the FEM method is a 

manual solution developed based on exact solutions obtain. Fig.7 shows the 

temperature graph of time at different coordinate points (   ) . An analytical 

solution as follows: 
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Figure 5. Plots of contours from the temperature of the polynomial FGMs with 761 

nodes 
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Figure 6. Comparison of FEM temperature with the exact solution 

 

 

 

 

 

 

 

 

 

 

Figure 7. Graph of temperature versus time at some point coordinates(   ) is 

different 

 

Geometry Complicated FGMs 

Polinomial Variations 

Figures 8a, 8b, and 8c show a contour plot of polynomial FGMs on 

complicated geometries. The results obtained there is no analytical solution. 

Therefore, the results obtained only based on numerical solutions with nodal 

amounts of 828, 1065, and 1329, respectively. 

 

 

 

 

 

a)       b)           c) 

 

 

Figure 8. Plot contours from the temperature of the polynomial FGMs with a) 828, 

b) 1065, and c) 1329 nodes 
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Exponential Variations 

Figures 9a, 9b, and 9c show a contour plot of exponential FGMs on 

complicated geometries. The results obtained there is no analytical solution. 

Therefore, the results obtained only based on numerical solutions with nodal 

amounts of 828, 1065, and 1329, respectively. 

 

 

 

 

 

a)       b)           c) 

 

 

Figure 9. Plot contours from the temperature of the exponential FGMs with a) 828, 

b) 1065, and c) 1329 nodes 

 

Trigonometry Variations 

Figures 10a, 10b, and 10c show a contour plot of exponential FGMs on 

complicated geometries. The results obtained there is no analytical solution. 

Therefore, the results obtained only based on numerical solutions with nodal 

amounts of 828, 1065, and 1329, respectively. 

 

 

 

 

 

a)       b)           c) 

 

 

Figure 10. Plot contours from the temperature of the trigonometry FGMs with a) 

828, b) 1065, and c) 1329 nodes 
 

D. CONCLUSION 

After conducting experiments on two-dimensional geometries such as 

cylindrical holes, squares, and complex geometries, with variations in the heat 

conduction properties of FGMs given quadratic, exponential, and trigonometry a 

conclusion is drawn. The result that FEM is the method recommended to analyze 

heat conduction in two-dimensional FGMs. The result is that heat conduction in 
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trigonometric variations is very good, resulting in low-temperature values compared 

to both of them. Then, the performance and efficiency obtained using FEM to 

analyze two-dimensional heat conductivity in FGMs is also very good. The hollow 

cylinder geometry, the average temperature obtained              . Then in the 

square geometry             . And the last in complicated geometry is   

          . Then, the performance and efficiency obtained using FEM to analyze 

two-dimensional heat conductivity in FGMs is also very good, respectively. A 

geometric hollow cylinder with quadratic, exponential, and trigonometry variation 

with a total capital of 1379, the processing time was 434.6 s, 435 s, and 444 s, 

respectively. Then in the square geometry, we get the same average processing time, 

which is 37 s. And finally, in complicated geometry, we get the same average 

processing time, which is 35 s. In the geometry of a hollow cylinder with quadratic 

variations with a nodal number of 761, an average error value of 0.0019 obtained. 

Then in the hollow geometry cylinder, the quadratic variation with a nodal number 

883, the average error value is 0.0013. And the last one in the hollow geometry 

cylinder, quadratic variation with the number of nodal 1379, the average error value 

is 0.0012. 
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